40.7k views
5 votes
What is the simplified form of the complex fraction?

What is the simplified form of the complex fraction?-example-1
User Mogli
by
6.9k points

2 Answers

3 votes


((2x^2+x-6)/(x^2-x-6))/((4x^2-9)/(x^2+5x+6))=(*)\\---------------------\\2x^2+x-6=2x^2+4x-3x-6=2x(x+2)-3(x+2)=(x+2)(2x-3)\\-----------\\x^2-x-6=x^2+2x-3x-6=x(x+2)-3(x+2)=(x+2)(x-3)\\-----------\\x^2+5x+6=x^2+2x+3x+6=x(x+2)+3(x+2)=(x+2)(x+3)\\-----------\\4x^2-9=(2x)^2-3^2=(2x-3)(2x+3)\\----------------------


(*)=((x+2)(2x-3))/((x+2)(x-3))\cdot((x+2)(x+3))/((2x-3)(2x+3))=(**)\\----------------------\\(x+2)-canceled\\(2x-3)-canceled\\----------------------\\(**)=((x+2)(x+3))/((x-3)(2x+3))\\\\Answer:\ \boxed{\boxed{((x+2)(x+3))/((2x+3)(x-3))}}

User Julius
by
7.5k points
1 vote

Answer:

[(x+3)(x+2)] /[(2x+3)(x-3)]

Explanation:

[(2x²+x-6)/(x²-x-6)]/[(4x²-9)/(x²+5x+6)]

= (2x²+x-6)/(x²-x-6) × (x²+5x+6) /(4x²-9) Factor

= [(2x-3)(x+2)]/[(x-3)(x+2] × [(x+3)(x+2)] /[(2x+3)(2x-3)] Cancel terms

= (2x-3)/(x-3) × [(x+3)(x+2)] /[(2x+3)(2x-3)] Cancel terms

= [(x+3)(x+2)] /[(2x+3)(x-3)]

User Distractedhamster
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories