232,422 views
11 votes
11 votes
Pls help to solve these 4 questions MAX POINTS

Pls help to solve these 4 questions MAX POINTS-example-1
User Muhammad Dyas Yaskur
by
2.5k points

1 Answer

13 votes
13 votes

Answer:


\textsf{23.} \quad \left((f)/(g)\right)(x) = (x^2-x-4)/(2x-6)


\textsf{24.} \quad \left(f \circ g\right)(x) =4x^2-26x+38


\textsf{25.} \quad \left(g \circ f \right)(x) =2x^2-2x-14


\textsf{26.} \quad g\left(f\left(-1\right)\right)=-10

Explanation:

Given functions:


\begin{cases}f(x)=x^2-x-4\\g(x)=2x-6\end{cases}

Function composition is an operation that takes two functions and produces a third function.

Question 23

The composite function (f/g)(x) means to divide function f(x) by function g(x):


\begin{aligned}\left((f)/(g)\right)(x) & = (f(x))/(g(x))\\& = (x^2-x-4)/(2x-6)\end{aligned}

Question 24

The composite function (f o g)(x) means to substitute function g(x) in place of the x in function f(x):


\begin{aligned}\left(f \circ g\right)(x) & = f\left[g(x)\right]\\& = f(2x-6)\\& =(2x-6)^2-(2x-6)-4\\& =(2x-6)(2x-6)-2x+6-4\\& =4x^2-24x+36-2x+2\\& =4x^2-24x-2x+36+2\\& =4x^2-26x+38\end{aligned}

Question 25

The composite function (g o f)(x) means to substitute function f(x) in place of the x in function g(x):


\begin{aligned}\left(g \circ f \right)(x) & = g\left[f(x)\right]\\& = g(x^2-x-4)\\&=2(x^2-x-4)-6\\&=2x^2-2x-8-6\\&=2x^2-2x-14\end{aligned}

Question 26

The composite function g(f(-1)) means to substitute x = -1 into function f(x) then substitute this result in place of the x in function g(x):


\begin{aligned}g\left(f\left(-1\right)\right) & = g\left((-1)^2-(-1)-4\right)\\& = g\left(1+1-4\right)\\& = g\left(-2\right)\\&=2(-2)-6\\&=-4-6\\&=-10\end{aligned}

User OlivierTerrien
by
2.9k points