Answer:
(4,3,2)
Explanation:
We can solve this via matrices, so the equations given can be written in matrix form as:
![\left[\begin{array}{cccc}3&2&1&20\\1&-4&-1&-10\\2&1&2&15\end{array}\right]](https://img.qammunity.org/2019/formulas/mathematics/high-school/1i86dhm7vpf09y3wvipv8o2dcs6ls2805a.png)
Now I will shift rows to make my pivot point (top left) a 1 and so:
![\left[\begin{array}{cccc}1&-4&-1&-10\\2&1&2&15\\3&2&1&20\end{array}\right]](https://img.qammunity.org/2019/formulas/mathematics/high-school/c575sb64j5b5ptm8j3a1rf31k5w5mp28ta.png)
Next I will come up with algorithms that can cancel out numbers where R1 means row 1, R2 means row 2 and R3 means row three therefore,
-2R1+R2=R2 , -3R1+R3=R3
![\left[\begin{array}{cccc}1&-4&-1&-10\\0&9&4&35\\0&14&4&50\end{array}\right]](https://img.qammunity.org/2019/formulas/mathematics/high-school/swj1y9vapkvbccxtz4m3e0xnoyg0p77zo8.png)

![\left[\begin{array}{cccc}1&-4&-1&-10\\0&1&(4)/(9)&(35)/(9)\\0&14&4&50\end{array}\right]](https://img.qammunity.org/2019/formulas/mathematics/high-school/3lpjvgbk5k54u46j4ct9de9fukafe0jc68.png)
4R2+R1=R1 , -14R2+R3=R3
![\left[\begin{array}{cccc}1&0&(7)/(9)&(50)/(9)\\0&1&(4)/(9)&(35)/(9)\\0&0&-(20)/(9)&-(40)/(9)\end{array}\right]](https://img.qammunity.org/2019/formulas/mathematics/high-school/ukzciwskfsmv12shggy3cm2ah6p3z86bhp.png)

![\left[\begin{array}{cccc}1&0&(7)/(9)&(50)/(9)\\0&1&(4)/(9)&(35)/(9)\\0&0&1&2\end{array}\right]](https://img.qammunity.org/2019/formulas/mathematics/high-school/4u5ez7y4d25hgggmojrd2et3pdb62oygo5.png)
,

![\left[\begin{array}{cccc}1&0&0&4\\0&1&0&3\\0&0&1&2\end{array}\right]](https://img.qammunity.org/2019/formulas/mathematics/high-school/pq7f24e0u9sbd0sdp1a544qo69zmjie8dv.png)
Therefore the solution to the system of equations are (x,y,z) = (4,3,2)
Note: If answer choices are given, plug them in and see if you get what is "equal to". Meaning plug in 4 for x, 3 for y and 2 for z in the first equation and you should get 20, second equation -10 and third 15.