Answer:
The identity is proved below.
Explanation:
The tangent of an angle
is given by:
![tan(\theta) = (sin(\theta))/(cos(\theta))](https://img.qammunity.org/2022/formulas/mathematics/college/7eiur5brr1334a9oizg4nk8yfgaz9mkzbd.png)
In this question, we are given the following trigonometric identity:
![(sin(\theta))/(sin(\theta)+cos(\theta)) = (tan(\theta))/(1+tan(\theta))](https://img.qammunity.org/2022/formulas/mathematics/college/wb2dhaghjb93s6o0jx6d0y8eqcz6eiziq4.png)
Applying the tangent
![(sin(\theta))/(sin(\theta)+cos(\theta)) = ((sin(\theta))/(cos(\theta)))/(1+(sin(\theta))/(cos(\theta)))](https://img.qammunity.org/2022/formulas/mathematics/college/a5uuc8hyobfclclmf0j3yv4fd5gk5ivhjj.png)
Now, we apply the least common multiple on the denominator. So
![(sin(\theta))/(sin(\theta)+cos(\theta)) = ((sin(\theta))/(cos(\theta)))/((cos(\theta)+sin(\theta))/(cos(\theta)))](https://img.qammunity.org/2022/formulas/mathematics/college/psbfi4bekiygwi48lv1b7zki9gmji6h1dh.png)
SImplifying the cosine:
![(sin(\theta))/(sin(\theta)+cos(\theta)) = (sin(\theta))/(sin(\theta)+cos(\theta))](https://img.qammunity.org/2022/formulas/mathematics/college/md3n8h9hb815gh1z27jmy5p19834i57ex7.png)
Which means that the identity is proved.