Answer:
The answer is "
"
Explanation:
In point a:
The requires 1 genin, 1 chunin , and 1 jonin to shape a complete team but we all recognize that each nation's team is comprised of 1 genin, 1 chunin, and 1 jonin.
They can now pick 1 genin from a certain matter of national with the value:

They can pick 1 Chunin form of the matter of national with the value:

They have the option to pick 1 join from of the country team with such a probability:

And we can make the country teams:
different forms. Its chances of choosing a team full in the process described also are:
In point b:
In this scenario, one of the 3 professional sides can either choose 3 genins or 3 chunines or 3 joniners. So, that we can form three groups that contain the same ninjas (either 3 genin or 3 chunin or 3 jonin).
Its likelihood that even a specific nation team ninja would be chosen is now:

Its odds of choosing the same rank ninja in such a different country team are:

The likelihood of choosing the same level Ninja from the residual matter of national is:
Therefore, all 3 selected ninjas are likely the same grade:
