117k views
1 vote
Arrange the steps to solve the equation

√(x + 3) - √(2x - 1) = - 2

User Lobati
by
8.7k points

1 Answer

5 votes


Domain:\\\\x+3\geq0\ \wedge\ 2x-1\geq0\\\\x\geq-3\ \wedge\ x\geq0.5\\\\D:x\in[0.5;\ \infty)


√(x+3)-√(2x-1)=-2\qquad\text{square of both sides}\\\\(√(x+3)-√(2x-1))^2=(-2)^2\qquad\text{use}\ (a-b)^2=a^2-2ab+b^2\\\\(√(x+3))^2-2(√(x+3))(√(2x-1))+(√(2x-1))^2=4\qquad\text{use}\ (√(a))^2=a\\\\x+3-2√((x+3)(2x-1))+2x-1=4\qquad\text{combine like terms}\\\\3x+2-2√((x+3)(2x-1))=4\qquad\text{subtract 3x + 2 from both sides}\\\\-2√((x+3)(2x-1))=2-3x\qquad\text{square of both sides}\\\\\left(-2√((x+3)(2x-1))\right)^2=(2-3x)^2


4(x+3)(2x-1)=2^2-2(2)(3x)+(3x)^2\qquad\text{use distributive property}\\\\(4x+12)(2x-1)=4-12x+9x^2\\\\(4x)(2x)+(4x)(-1)+(12)(2x)+(12)(-1)=4-12x+9x^2\\\\8x^2-4x+24x-12=4-12x+9x^2\\\\8x^2+20x-12=4-12x+9x^2\qquad\text{subtract }\ 9x^2\ \text{from both sides}\\\\-x^2+20x-12=4-12x\qquad\text{add 12 and}\ 12x\ \text{from both sides}\\\\-x^2+36x=16\qquad\text{change the signs}\\\\x^2-36x=-16\\\\x^2-2(x)(16)=-16\qquad\text{add}\ 16^2\ \text{to both sides}


\underbrace{x^2-2(x)(16)+16^2}_((a-b)^2=a^2-2ab+b^2)=16^2-16\\\\(x-16)^2=256-16\\\\(x-16)^2=240\iff x-16=\pm√(240)\\\\x-16=\pm√(16\cdot15)\\\\x-16=-√(16)\cdot√(15)\ \vee\ x-16=√(16)\cdot√(15)\\\\x-16=-4√(15)\ \vee\ x-16=4√(15)\qquad\text{add 16 to both sides}\\\\x=16-4√(15)\\otin D\ \vee\ x=16+4√(15)\\\\\boxed{x=4(4+√(15))}

User Djabx
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories