36.4k views
2 votes
Point C(3.6, -0.4) divides in the ratio 3 : 2. If the coordinates of A are (-6, 5), the coordinates of point B are .

A (5,-4)
B (5,-2)
C (10,-4)
D (10,-2)

If point D divides in the ratio 4 : 5, the coordinates of point D are .
A (62/9,-4)
B (58/9,-4)
C (62/9,-2)
D (58/9,-2)

User Anabela
by
8.1k points

1 Answer

2 votes

QUESTION 1

The point C(3.6, -0.4) divides AB in the ratio 3 : 2.

The coordinates of A are (-6, 5).

Let the coordinates of B be
(x_2,y_2)

We use the formula:


x=(mx_2+nx_1)/(m+n) to determine the x-coordinate of B.

We substitute the known values to obtain:


3.6=(3x_2+2(-6))/(3+2)


3.6=(3x_2-12))/(5)


3.6* 5=3x_2-12


18=3x_2-12


18+12=3x_2


30=3x_2

This implies that:


x_2=10

We also use the formula:


y=(my_2+ny_1)/(m+n) to find the y-coordinate.


-0.4=(3y_2+2(5))/(3+2)


-0.4=(3y_2+10)/(5)


-0.4* 5=3y_2+10


-2-10=3y_2


-12=3y_2


-4=y_2

The coordinates of B are (10,-4)

QUESTION 2.

If point D divides CD in the ratio 4 : 5.

Then the coordinates of D are:


((4(10)+5(3.6))/(4+5), (4(-4)+5(-0.4))/(4+5))


((58)/(9), (-18)/(9))

The coordinates of D are
((58)/(9), -2)

User Chany
by
8.4k points