161k views
5 votes
Consider the given recursive function of an arithmetic sequence.

F(1)=4
F(n)=f(n-1) +7, for n=2,3,4.....

What is the 8th term of the sequence?
A. 60
B. 53
C. 46
D. 67

2 Answers

6 votes

Answer:

B. 53

Explanation:

User Bert Peters
by
7.8k points
6 votes

Method 1:


F(1)=4\\\\F(n)=F(n-1)+7\\\\n\in\{2,\ 3,\ 4,\ 5,\ ...\}\\\\F(2)=F(1)+7\to F(2)=4+7=11\\\\F(3)=F(2)+7\to F(3)=11+7=18\\\\F(4)=F(3)+7\to F(4)=18+7=25\\\\F(5)=F(4)+7\to F(5)=25+7=32\\\\F(6)=F(5)+7\to F(6)=32+7=39\\\\F(7)=F(6)+7\to F(7)=39+7=46\\\\F(8)=F(7)+7\to F(8)=46+7=53

Answer: B. 53

Method 2:

The general formula of an arithmetic sequence:


a_n=a_1+(n-1)d

We have:


a_1=F(1)=4,\ d=7

Substitute:


a_n=4+(n-1)(7)=4+7n-7=7n-3

Put n = 8 to the formula:


a_8=7(8)-3=56-3=53

Answer: B. 53

User Michal Harakal
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories