If the points P (7, 12), Q (-3, -12) and R (14, 5) lie on a circle with the center C (0, 2), then the distance OP, OQ and OR are the same.
The formula of a distance between two points:
![d=√((x_2-x_1)^2+(y_2-y_1)^2)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/3fktmglj8sv0ehs8qd9rm7v2895ga3sa4x.png)
Substitute:
![OP=√((2-7)^2+(0-12)^2)=√((-5)^2+(-12)^2)=√(25+144)=√(169)\\\\\boxed{OP=13}\\\\OQ=√((2-(-3))^2+(0-(-12))^2)=√(5^2+12^2)=√(25+144)=√(169)\\\\\boxed{OQ=13}\\\\OR=√((2-14)^2+(0-5)^2)=√((-12)^2+(-5)^2)=√(144+25)=√(169)\\\\\boxed{OR=13}](https://img.qammunity.org/2019/formulas/mathematics/middle-school/celd2s1ltwc2zuc12dch1gnjltewf0eqnb.png)
OP = OQ = OR, therefore the points P, Q and R lie on one circle.