69.3k views
2 votes
Find the coordinates of point P along the directed line segment AB so that AP to PB is the given ratio. A(−8, 0) , B(−3, 5) ; 2 to 3

2 Answers

3 votes


\bf ~~~~~~~~~~~~\textit{internal division of a line segment} \\\\\\ A(-8,0)\qquad B(-3,5)\qquad \qquad \stackrel{\textit{ratio from 2 to 3}}{2:3} \\\\\\ \cfrac{A\underline{P}}{\underline{P} B} = \cfrac{2}{3}\implies \cfrac{A}{B} = \cfrac{2}{3}\implies 3A=2B\implies 3(-8,0)=2(-3,5)\\\\[-0.35em] ~\dotfill\\\\ P=\left(\frac{\textit{sum of


\bf P=\left(\cfrac{(3\cdot -8)+(2\cdot -3)}{2+3}\quad ,\quad \cfrac{(3\cdot 0)+(2\cdot 5)}{2+3}\right) \\\\\\ P=\left(\cfrac{-24-6}{5}~,~\cfrac{0+10}{5} \right)\implies P=(-6~,~2)

User Mahmoud Haj Ali
by
7.6k points
3 votes

Answer:


Explanation:


User Chat
by
8.6k points