156k views
2 votes
Find the zeros of y = x2 – 6x – 4 by completing the square.

1 Answer

10 votes

Answer:

The solutions to the quadratic equations are:


x=√(13)+3,\:x=-√(13)+3

Explanation:

Given the function


y\:=\:x^2\:-\:6x\:-\:4

substitute y = 0 in the equation to determine the zeros


0\:=\:x^2\:-\:6x\:-\:4

Switch sides


x^2-6x-4=0

Add 4 to both sides


x^2-6x-4+4=0+4

Simplify


x^2-6x=4

Rewrite in the form (x+a)² = b

But, in order to rewrite in the form x²+2ax+a²

Solve for 'a'

2ax = -6x

a = -3

so add a² = (-3)² to both sides


x^2-6x+\left(-3\right)^2=4+\left(-3\right)^2


x^2-6x+\left(-3\right)^2=13

Apply perfect square formula: (a-b)² = a²-2ab+b²


\left(x-3\right)^2=13


\mathrm{For\:}f^2\left(x\right)=a\mathrm{\:the\:solutions\:are\:}f\left(x\right)=√(a),\:-√(a)

solve


x-3=√(13)

Add 3 to both sides


x-3+3=√(13)+3

Simplify


x=√(13)+3

now solving


x-3=-√(13)

Add 3 to both sides


x-3+3=-√(13)+3

Simplify


x=-√(13)+3

Thus, the solutions to the quadratic equations are:


x=√(13)+3,\:x=-√(13)+3

User Keerthi
by
3.4k points