has no antiderivative in terms of elementary functions (polynomials, exponentials, logarithms, trigonometric functions, etc), but there is a special function defined to fit that role called the error function,
, where
![\mathrm{erf}(x)=\displaystyle\frac2{\sqrt\pi}\int_0^xe^(-t^2)\,\mathrm dt](https://img.qammunity.org/2019/formulas/mathematics/college/xvgtxlp2exegbhzl9iyds383104b0l5nrc.png)
By the fundamental theorem of calculus, we can see that
![(\mathrm d)/(\mathrm dx)\mathrm{erf}(x)=\frac2{\sqrt\pi}e^(-x^2)](https://img.qammunity.org/2019/formulas/mathematics/college/y0ga0r4rupopgzejwxypz13qb1yhe4t85l.png)
which means we have
![\displaystyle\int e^(-x^2)\,\mathrm dx=\frac{\sqrt\pi}2\mathrm{erf}(x)+C](https://img.qammunity.org/2019/formulas/mathematics/college/32tt4bgio4m5g8eb7z4k47ogf7a7dnbd3v.png)