163k views
19 votes
(x sin a + y cos a)^2 + (x cos a – y sin a)^2 = x^2 + y^2

User RidRoid
by
3.6k points

1 Answer

6 votes

Answer:

Proved

Explanation:

Required

Prove that:


(x\ sin\ a + y\ cos\ a)^2 + (x\ cos\ a - y\ sin\ a)^2 = x^2 + y^2

Solving from left to right:

Open brackets


(x\ sin\ a + y\ cos\ a)(x\ sin\ a + y\ cos\ a) + (x\ cos\ a - y\ sin\ a)(x\ cos\ a - y\ sin\ a) = x^2 + y^2
x^2\ sin^2 a + 2xy\ sin\ a\ cos\ a + y^2\ cos^2 a + x^2\ cos^2 a - 2xy\ sin\ a\ cos\ a + y^2\ sin^2 a = x^2 + y^2

Collect Like Terms


x^2\ sin^2 a + 2xy\ sin\ a\ cos\ a - 2xy\ sin\ a\ cos\ a + y^2\ cos^2 a + x^2\ cos^2 a+ y^2\ sin^2 a = x^2 + y^2


x^2\ sin^2 a + y^2\ cos^2 a + x^2\ cos^2 a+ y^2\ sin^2 a = x^2 + y^2

Collect Like Terms


x^2\ sin^2 a + y^2\ sin^2 a + x^2\ cos^2 a + y^2\ cos^2 a = x^2 + y^2

Factorize:


(x^2 + y^2)\ sin^2 a + (x^2 + y^2) cos^2 a = x^2 + y^2

Further factorize


(x^2 + y^2)(sin^2 a + cos^2 a) = x^2 + y^2

In trigonometry:


sin^2 a + cos^2 a = 1

So, we have:


(x^2 + y^2)(1) = x^2 + y^2


x^2 + y^2 = x^2 + y^2

Proved

User Juan Elfers
by
3.2k points