168k views
2 votes
Two numbers have a difference of 34. What is the sum of their squares if it is a minimum?

User Bvanvugt
by
8.4k points

1 Answer

6 votes


a,b-the\ numbers\\\\a-b=34\to a=34+b\\\\a^2+b^2\to minimum\\\\\text{substitute:}\\\\(34+b)^2+b^2\to minimum\\\\f(b)=(34+b)^2+b^2\qquad\text{use}\ (x+y)^2=x^2+2xy+y^2\\\\f(b)=34^2+(2)(34)(b)+b^2+b^2\\\\f(b)=1156+68b+2b^2\to f(b)=2b^2+68b+1156\\\\y=ax^2+bx+c\\\\if\ a>0\ then\ a\ parabola\ op en\ up\\if\ a<0\ then\ a\ parabola\ op en\ down\\\\if\ a>0\ then\ a\ parabola\ has\ a\ minimum\ at\ a\ vertex\\if\ a<0\ then\ a\ parabola\ has\ a\ maximum\ at\ a\ vertex


\text{We have}\ a=2>0.\ \text{Therefore the parabola has the minimum at the vertex.}\\\\(h,\ k)-vertex\\\\h=(-b)/(2a);\ k=f(h)\\\\\text{We have}\ a=2\ \text{and}\ b=68.\ \text{Substitute:}\\\\h=(-68)/(2(2))=(-68)/(4)=-17\\\\k=f(-17)=2(-17)^2+68(-17)+1156=2(289)-1156+1156=578


\text{Therefore}\ b=-17\ \text{and}\ a=34+b\to a=34+(-17)=17.\\\\Answer:\ a^2+b^2=17^2+(-17)^2=289+289=578

User Tfrysinger
by
8.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories