27.0k views
9 votes
OKJZ IOEAFQWKEJSIERRA CARDEKSAMXCQEQEWKDSXMZ

OKJZ IOEAFQWKEJSIERRA CARDEKSAMXCQEQEWKDSXMZ-example-1
User Ady Junior
by
3.5k points

1 Answer

10 votes

Answer:


(4f)^3 = 64*f^3


(-(3)/(2)t^2)^2 = (9)/(4)t^4

Explanation:

Solving (a):


(4f)^3

Apply law of indices:


x^3 = x * x * x

So, we have:


(4f)^3 = 4f * 4f * 4f

Rewrite as:


(4f)^3 = 4 * 4 * 4*f*f*f


(4f)^3 = 64*f^3

Solving (b):


(-(3)/(2)t^2)^2

Apply law of indices:


x * x = x^2

So, we have:


(-(3)/(2)t^2)^2 = (-(3)/(2)t^2) * (-(3)/(2)t^2)

Remove brackets


(-(3)/(2)t^2)^2 = -(3)/(2)t^2 * -(3)/(2)t^2

Rewrite as:


(-(3)/(2)t^2)^2 = -(3)/(2)*-(3)/(2)*t^2 * *t^2


(-(3)/(2)t^2)^2 = (3)/(2)*(3)/(2)*t^4


(-(3)/(2)t^2)^2 = (9)/(4)*t^4


(-(3)/(2)t^2)^2 = (9)/(4)t^4

User Dsdel
by
3.4k points