Answer:
1. Translation 6 units to the right.
2. Stretch by a factor 5.
3. Translation 2 units up.
Explanation:
Consider parent function
![f(x)=x^2.](https://img.qammunity.org/2019/formulas/mathematics/college/r5lzoron1b3c3kahu7cp3i2oq2jcxxb3of.png)
1. Translate the graph of the function 6 units to the right. Then you get the function
![f_1(x)=(x-6)^2.](https://img.qammunity.org/2019/formulas/mathematics/high-school/gftoadgj1ahh9p0wuiy73ojxr4dm40im2y.png)
2. Stretch the graph of the function
by a factor 5 and get the function
![f_2(x)=5(x-6)^2.](https://img.qammunity.org/2019/formulas/mathematics/high-school/d0he63n02g8g3g7yy8e4vzhxb48lo3kuk2.png)
3. Translate the graph of the function
2 units up to fet the function
![h(x)=5(x-6)^2+2.](https://img.qammunity.org/2019/formulas/mathematics/high-school/tydx2m4hy76ys8facv994yozkrn4ky8cpg.png)