184k views
4 votes
Solve the simultaneous linear equation

Solve the simultaneous linear equation-example-1
User Keating
by
8.1k points

2 Answers

9 votes

Answer:

x = 5 and y =-2

Explanation:

2x+3y = 4

3x+2y = 11

Multiply first equation by 2 throughout and second equation by 3 we get

4x + 6y = 8

9x + 6y = 33

subtracting the equations we get

9x - 4x = 33-8

5x = 25

x = 5

substituting x= 5 in 1st equation

10 + 3y = 4

3y = 4-10

3y = -6

y = -6/3

y= -2

User JKillian
by
9.0k points
8 votes

Required Solution :

For first equation,

  • 2x + 3y = 4


: \longmapsto \: \sf{2x \: = \: 4 - 3y}


: \longmapsto \: \boxed{\sf{x \: = \: (4 \: - \: 3y)/(2)}}

Now, substitute this value of x in second equation.


: \longmapsto \: \sf{3 \bigg( (4 - 3y)/(2) \bigg) + 2y \: = \: 11}


: \longmapsto \: \sf{3 * \bigg( (4 - 3y)/(2) \bigg) + 2y \: = \: 11}


: \longmapsto \: \sf{ (12 \: - \: 9y )/(2) + 2y \: = \: 11}


: \longmapsto \: \sf{ (12 \: - \: 9y \: + 4y )/(2) \: = \: 11}


: \longmapsto \: \sf{ (12 \: - \: 5y )/(2) \: = \: 11}


: \longmapsto \: \sf{ 12 \: - \: 5y \: = \: 11 *2}


: \longmapsto \: \sf{ 12 \: - \: 5y \: = \: 22}


: \longmapsto \: \sf{ - \: 5y \: = \: 22 \: - \: 12}


: \longmapsto \: \sf{ - \: 5y \: = \:10}


: \longmapsto \: \sf{ y \: = \: - (10)/(5) }


: \longmapsto \: \red{ \boxed{\bf{ y \: = \: - 2 }}}

Finding out value of x :


: \longmapsto \: \sf{x \: = \: (4 - 3( - 2))/(2) }


: \longmapsto \: \sf{x \: = \: (4 - 3 * ( - 2))/(2) }


: \longmapsto \: \sf{x \: = \: (4 + 6)/(2) }


: \longmapsto \: \sf{x \: = \: (10)/(2) }


: \longmapsto \: \sf{x \: = \: \cancel(10)/(2) }


: \longmapsto \: \red{ \boxed{\bf{ x \: = \: 5 }}}

User Sharku
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories