223k views
3 votes
A recursive rule for a geometric sequence is a1=3;an=1/2an−1.

What is the explicit rule for this sequence?



Enter your answer in the box.

2 Answers

3 votes

Answer:

The answer is: a_n = 6*(1/2)^n

User Giridharan
by
5.7k points
3 votes

A recursive rule for a geometric sequence:


a_1\\\\a_n=r\cdot a_(n-1)

---------------------------------------------------


a_1=3\\\\a_n=(1)/(2)a_(n-1)\to \boxed{r=(1)/(2)}

--------------------------------------------------

Exciplit rule:


a_n=a_1r^(n-1)

Substitute:


a_n=3\left((1)/(2)\right)^(n-1)=3\cdot\left((1)/(2)\right)^n\cdot\left((1)/(2)\right)^(-1)=3\cdot\left((1)/(2)\right)^n\cdot2\\\\\boxed{a_n=6\cdot\left((1)/(2)\right)^n}

User Mixtou
by
5.7k points