99.6k views
0 votes
A recursive rule for a geometric sequence is a1=2; an= 4/9 an-1

What is the explicit rule for this sequence?

1 Answer

6 votes

A recursive rule for a geometric sequence:


a_1\\\\a_n=r\cdot a_(n-1)

---------------------------------------------------


a_1=2;\ a_n=(4)/(9)a_(n-1)\to r=(4)/(9)

---------------------------------------------------

The exciplit rule:


a_n=a_1r^(n-1)

Substitute:


a_n=2\left((4)/(9)\right)^(n-1)=2\cdot\left((4)/(9)\right)^n\cdot\left((4)/(9)\right)^(-1)=2\cdot\left((4)/(9)\right)^n\cdot(9)/(4)\\\\\boxed{a_n=(9)/(2)\cdot\left((4)/(9)\right)^n}

User Simon Sabin
by
8.3k points

No related questions found