150k views
3 votes
Two water jets are emerging from a vessel at a height of 50 centimeters and 100 centimeters. If their horizontal velocities at the point of ejection are 1 meter/second and 0.5 meters/second respectively, calculate the ratio of their horizontal distances of impact.

A. 1:04 B. 1:234 C. 2:01 D. 1.41:1 E. 3:02

User Sairfan
by
7.4k points

1 Answer

2 votes

Answer: The correct answer is option (D).

Step-by-step explanation:

Vertical distance of first water jet =
y_1=50 cm

Vertical distance of second water jet =
y_2=100 cm

Horizontal velocity of first water jet =
u_y_ 1=1 m/s

Horizontal velocity of second water jet =
u_y_2=0.5 m/s

Vertical distance of first water jet:


y_1=(u_y_1)t_1+(1)/(2)gt_1^2


u_y_1=0,(u_y_1)t_1=0


t_1=\sqrt{(2y_1)/(g)}...(1)

Similarly, Vertical distance of second water jet:


y_2=(u_y_2)t_2+(1)/(2)gt_2^2


u_y_2=0,(u_y_2)t_2=0


t_2=\sqrt{(2y_2)/(g)}...(2)

Horizontal distance of first water jet:


x_1=(u_x_1)t_1+(1)/(2)at_1^2

There is no acceleration in horizontal direction.


a=0,at_1^2=0


x_1=(u_y_1)t_1...(3)

Horizontal distance of second water jet:


x_2=(u_x_2)t_2+(1)/(2)at_2^2


a=0,at_2^2=0


x_2=(u_x_2)t_2...(4)

On dividing (3) and (4):


(x_1)/(x_2)=((u_y_1)t_1)/((u_y_2)t_2)


(x_1)/(x_2)=(u_y_1)/(u_y_2)*\frac{\sqrt{(2y_1)/(g)}}{\sqrt{(2y_2)/(g)}}}=(u_y_1)/(u_y_2)\sqrt{(y_1)/(y_2)}

(from (1) and (2))


(x_1)/(x_2)=(1 m/s)/(0.5 m/s)\sqrt{(50 cm)/(100 cm)}=1.41:1

Hence, the correct answer is option (D).


User Michael Klenk
by
6.9k points