Answer:
![W^3+10W^2+25W=12,500](https://img.qammunity.org/2022/formulas/mathematics/college/v5l74kzexk1dk3oz4asfpva4u200sddooz.png)
Explanation:
The Volume of a Rectangular Prism
Given a rectangular prism of width W, length L, and height H, the volume is computed with the formula:
![V=WLH](https://img.qammunity.org/2022/formulas/mathematics/college/j7ouwwkge4hfr95gn1rr1p8z5k4epk00db.png)
The shipping container must have the following conditions:
The length must be 10 ft longer than twice the width:
L = 2W + 10
The height must be 5 feet greater than the width:
H = W + 5
Substituting in the formula of the volume:
![V=W(2W+10)(W+5)](https://img.qammunity.org/2022/formulas/mathematics/college/fb7b2nmwyxyxxgkvc1bdyjjkth5o8rgkm3.png)
Multiplying:
![V=W(2W^2+10W+10W+50)](https://img.qammunity.org/2022/formulas/mathematics/college/nww4z46hiv1sn5iulyd70kqh54h91qmvqg.png)
![V=2W^3+10W^2+10W^2+50W](https://img.qammunity.org/2022/formulas/mathematics/college/p02eybl1czosh7qrpr65bd63gfyhyaaev2.png)
Simplifying:
![V=2W^3+20W^2+50W](https://img.qammunity.org/2022/formulas/mathematics/college/luuqga7h0lmm5r2ph7leouwz28ahsqorts.png)
This volume is known to have a value of 25,000 cubic feet, thus:
![2W^3+20W^2+50W=25,000](https://img.qammunity.org/2022/formulas/mathematics/college/zdbtanq9dgqgdtp3bz8tyiq9ee6za02v6y.png)
Dividing by 2:
![\boxed{W^3+10W^2+25W=12,500}](https://img.qammunity.org/2022/formulas/mathematics/college/eppv94eqzzkdkasq9c6m0obnuctqu6qi28.png)