132k views
4 votes
Please help!

1. Find the volume for 5 different spheres by randomly choosing different radii.
Using the same radii values, find the volume of 5 cylinders where the height of the cylinder is the same as the diameter of the sphere.

Please help! 1. Find the volume for 5 different spheres by randomly choosing different-example-1
User Siyb
by
5.1k points

2 Answers

7 votes

Answer:

Please, see the attached file.

Thanks.

Explanation:

Please, see the attached file.

Thanks.

Please help! 1. Find the volume for 5 different spheres by randomly choosing different-example-1
User Koen Morren
by
5.2k points
3 votes

Answer:


\begin{array}{ccc}\text{Radius}&\text{Volume of sphere}&\text{Volume of cylinder}\\&&\\1&(4)/(3)\pi &2\pi \\&&\\2&(32)/(3)\pi &16\pi \\&&\\3&36\pi &54\pi \\&&\\4&(256)/(3)\pi &128\pi \\&&\\5&(500)/(3)\pi &250\pi\end{array}

Explanation:

Use formulas for the volumes:


V_(sphere)=(4)/(3)\pi r^3,\\ \\V_(cylinder)=\pi r^2h=\pi r^2\cdot 2r=2\pi r^3.

1. When r=1,


V_(sphere)=(4)/(3)\pi\cdot 1^3=(4)/(3)\pi,\\ \\V_(cylinder)=2\pi \cdot 1^3=2\pi.

2. When r=2,


V_(sphere)=(4)/(3)\pi\cdot 2^3=(32)/(3)\pi,\\ \\V_(cylinder)=2\pi \cdot 2^3=16\pi.

3. When r=3,


V_(sphere)=(4)/(3)\pi\cdot 3^3=36\pi,\\ \\V_(cylinder)=2\pi \cdot 3^3=54\pi.

4. When r=4,


V_(sphere)=(4)/(3)\pi\cdot 4^3=(256)/(3)\pi,\\ \\V_(cylinder)=2\pi \cdot 4^3=128\pi.

5. When r=5,


V_(sphere)=(4)/(3)\pi\cdot 5^3=(500)/(3)\pi,\\ \\V_(cylinder)=2\pi \cdot 5^3=250\pi.

Note that for all r,


(V_(sphere))/(V_(cylinder))=((4)/(3)\pi r^3)/(2\pi r^3)=(2)/(3).

User Jadusty
by
5.6k points