70.3k views
0 votes
Given sin(−θ)=−1/4 and tanθ=√15/15 . What is the value of cosθ ?

User Xtophe
by
8.7k points

2 Answers

4 votes

Answer:


\cos \theta = (√(15))/(4)

Explanation:

The sine function is an odd function, that is:


\sin (-\theta) = - \sin \theta

Then,


\sin \theta = (1)/(4)

The cosine function is computed by the following relation:


\cos \theta = (\sin \theta)/(\tan \theta)


\cos \theta = ((1)/(4) )/((√(15))/(15) )


\cos \theta = ((1)/(4) )/((1)/(√(15)) )


\cos \theta = (√(15))/(4)

User Yeerk
by
8.5k points
0 votes

Answer:


\cos\left(\theta\right)=(√(15))/(4)

Explanation:

Given that
\sin\left(-\theta\right)=-(1)/(4) and
\tan\left(\theta\right)=(√(15))/(15)

Using those values we need to find value of
\cos\left(\theta\right)

So let's begin with equation of
\tan\left(\theta\right)=(√(15))/(15) and simplify it to get value of
\cos\left(\theta\right)


\tan\left(\theta\right)=(√(15))/(15)



(\sin\left(\theta\right))/(\cos\left(\theta\right))=(√(15))/(15)


\sin\left(\theta\right)=(√(15))/(15)\cos\left(\theta\right)


\sin\left(\theta\right)\cdot(15)/(√(15))=\cos\left(\theta\right)


\cos\left(\theta\right)=\sin\left(\theta\right)\cdot(15)/(√(15))


\cos\left(\theta\right)=-\sin\left(-\theta\right)\cdot(15)/(√(15)) {since
\sin\left(-\theta\right)=-\sin\left(\theta\right) }


\cos\left(\theta\right)=-\sin\left(-\theta\right)\cdot√(15)


\cos\left(\theta\right)=-\left(-(1)/(4)\right)\cdot√(15)


\cos\left(\theta\right)=(√(15))/(4)

User Smolesen
by
9.0k points