Answer:
D) 0.0796
Explanation:
Birth weights in Norway are normally distributed with a mean of 3570 g and a standard deviation of 500 g.
mean = 3570 and SD = 500
We need to find P(3500<x<3600)
P(3500<x<3600)= P(x=3600)- P(x=3500)
to find P(x=3600) we find z-score
![z= (x-mean)/(SD) =(3600-3570)/(500) =0.06](https://img.qammunity.org/2019/formulas/mathematics/high-school/pz76ylu2aecwiihdzbh6ip1ghz147sjs3u.png)
Now use z-score table . z-score = 0.5239
P(x=3600)=0.6179
to find P(x=3500) we find z-score
![z= (x-mean)/(SD) =(3500-3570)/(500) =-0.14](https://img.qammunity.org/2019/formulas/mathematics/high-school/1lti5gdvs7rdu0uh7murb3pn0sb3rmikzn.png)
Now use z-score table . z-score = 0.4443
P(x=3600)=0.4443
P(3500<x<3600)= P(x=3600)- P(x=3500)
P(3500<x<3600)=0.5239-0.4443 = 0.0796