Answer:
Axis of symmetry are lines x=-6 and y=-4, center (-6,-4)
Explanation:
Consideer the equation
![x^2+y^2+12x+8y=48.](https://img.qammunity.org/2019/formulas/mathematics/college/pm9bf9l24d3me9lgl83p6nb01zxa4ji1su.png)
First, complete perfect squares:
![(x^2+12x)+(y^2+8y)=48,\\ \\(x^2+12x+36-36)+(y^2+8y+16-16)=48,\\ \\(x+6)^2+(y+4)^2-36-16=48,\\ \\(x+6)^2+(y+4)^2=100.](https://img.qammunity.org/2019/formulas/mathematics/college/9cy56ohkrv39maiut70wz5kk18em7zlgii.png)
This equation represents a circle with center at point (-6,-4) and radius r=10.
Axis of symmetry are lines x=-6 and y=-4 (vertical and horizontal lines passing through the center).