231k views
2 votes
Use row reduction to solve the system of equations.

Use row reduction to solve the system of equations.-example-1

1 Answer

6 votes

Answer:


x=-1223,y=-629,z=-31

Explanation:

The given systems of equations is


x-2y+z=4


3x-5y-17z=3


2x-6y+43z=-5


The augmented matrix is


\left[\begin{array}{cccc}1&-2&1&|\:\:\:\:4\\3&-5&-17&|\:\:\:\:3\\2&-6&43&|-5\end{array}\right].

We perform the following row operations to reduce the matrix to reduced row echelon form using row 1 as our pivot row.


R_2-3R_1\rightarrow R_2


R_3-2R_1\rightarrow R_3



\left[\begin{array}{cccc}1&-2&1&|\:\:\:\:\:\:\:\:\:\:4\\0&1&-20&|\:\:\:\:-9\\0&-2&41&|-13\end{array}\right]


Next, we perform the following row operations using row 2 as our pivot row to obtain,



R_1+2R_2\rightarrow R_1


R_3+2R_2\rightarrow R_3



\left[\begin{array}{cccc}1&0&-39&|-14\\0&1&-20&|\:\:-9\\0&0&1&|-31\end{array}\right]

Next, we perform the following row operations using row 3 as our pivot row to get,



R_1+39R_3\rightarrow R_1


R_2+20R_3\rightarrow R_2



\left[\begin{array}{cccc}1&0&0&|\:-1223\\0&1&0&|\:\:\:\:-629\\0&0&1&|\:\:\:\:\:\:-31\end{array}\right]

The matrix is now in the reduced row echelon form,

Therefore the solution is,



x=-1223,y=-629,z=-31


User Shannel
by
5.1k points