108k views
0 votes
Evaluate 10c3 and 8p3

User Bilkis
by
7.2k points

1 Answer

5 votes
QUESTION 1

We want to evaluate

^(10) C_3

We use the formula,


^(n) C_r = (n!)/(( n - r)!r!)

Substitute

n = 10 \: and \: r = 3
in to the above formula, to obtain,


^(10) C_3= (10!)/(( 10 - 3)!3!)


Simplify the right hand side to get,


^(10) C_3= (10!)/(7!3!)

This implies that,



^(10) C_3= (10 * 9 * 8 * 7!)/(7! * 3 * 2 * 1)

This simplifies to,


^(10) C_3= (10 * 9 * 8)/(3 * 2 * 1)


We cancel out common factors to get,


^(10) C_3= (10 * 3 * 4)/(1 * 1* 1)


^(10) C_3= (120)/(1)


\therefore \: ^(10) C_3=120


QUESTION 2


We want to evaluate

^(8) P_3

We apply the formula,


^(n) P_r =(n!)/(( n - r)!)


We substitute

n = 8 \: and \: r = 3
into the formula to get,.

^(8) P_3=(8!)/(( 8 - 3)!)


Simplify the right hand side to get,


^(8) P_3=(8!)/(5!)


This will further give us,


^(8) P_3=(8 * 7 * 6 * 5!)/(5!)


This will Simplify to,


^(8) P_3=(8 * 7 * 6 * 1)/(1)



^(8) P_3=336
User Capfan
by
8.1k points