Hello from MrBillDoesMath
Answer:
See below
Discussion:
Be definition secx = (1/cos)\ and tanx = sinx/cos. Substitute these in the the original equation
(secx - cosx)/tanx = ( (1/cosx ) -cosx) )/ (sinx/cosx) ) =
Multiply top and bottom by cosx:
cosx ( (1/cosx) - cosx) / ( ( sinx /cosx) * cosx ) =
(1 - (cosx)^2) / sinx
From (sinx)^2 + (cosx)^2 -1, 1 - (cosx) ^2 = (sinx)^2. Substitute this in the above equation to get
(sinx)^2 / (sinx) = sinx
Thank you,
Mr. B