82.6k views
2 votes
Calculus Help Please!!!

Calculus Help Please!!!-example-1

2 Answers

2 votes

Hello from MrBillDoesMath!

Answer:

y' = -1/(1+sinx)

the fourth choice.



Discussion:

Using the derivative quotient rule

y' = ( (1 + sinx) (-sinx) - cosx ( cosx) ) \ ( 1 + sinx)^2

as (cosx)' = -sinx and (sinx)' = cos

Expanding we get

y' = ( -sinx - (sinx)^2 - (cosx)^2 ) \ (1 + sinx)^2

But (sinx)^2 + (cos)^2 = 1 so this equals

y' = ( -sinx -1 )\ ( 1 + sinx)^2 =>

y' = - ( 1 + sinx) / (1 + sinx)^2

Notice the numerator is the square of the denominator so

y' = -1/(1+sinx)


which is the fourth choice



Thank you,

MrB


User Sam King
by
8.0k points
4 votes

Answer:


\displaystyle y' = (-1)/(1 + \sin x)

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Addition/Subtraction]:
\displaystyle (d)/(dx)[f(x) + g(x)] = (d)/(dx)[f(x)] + (d)/(dx)[g(x)]

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Quotient Rule]:
\displaystyle (d)/(dx) [(f(x))/(g(x)) ]=(g(x)f'(x)-g'(x)f(x))/(g^2(x))

Explanation:

Step 1: Define

Identify


\displaystyle y = (\cos x)/(1 + \sin x)

Step 2: Differentiate

  1. [Function] Derivative Rule [Quotient Rule]:
    \displaystyle y' = ((\cos x)'(1 + \sin x) - \cos x(1 + \sin x)')/((1 + \sin x)^2)
  2. Trigonometric Differentiation:
    \displaystyle y' = (-\sin x(1 + \sin x) - \cos x(1 + \sin x)')/((1 + \sin x)^2)
  3. Rewrite [Derivative Rule - Addition/Subtraction]:
    \displaystyle y' = (-\sin x(1 + \sin x) - \cos x[(1)' + (\sin x)'])/((1 + \sin x)^2)
  4. Trigonometric Differentiation:
    \displaystyle y' = (-\sin x(1 + \sin x) - \cos x[(1)' + \cos x])/((1 + \sin x)^2)
  5. Basic Power Rule:
    \displaystyle y' = (-\sin x(1 + \sin x) - \cos^2 x)/((1 + \sin x)^2)
  6. Factor:
    \displaystyle y' = (- \big[ \sin x(1 + \sin x) + \cos^2 x \big])/((1 + \sin x)^2)
  7. Expand:
    \displaystyle y' = (- \big[ \sin x+ \sin^2 x + \cos^2 x \big])/((1 + \sin x)^2)
  8. Simplify:
    \displaystyle y' = (-(\sin x + 1))/((1 + \sin x)^2)
  9. Simplify:
    \displaystyle y' = (-1)/(1 + \sin x)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

User Art Doler
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories