Hello from MrBillDoesMath!
Answer:
y' = -1/(1+sinx)
the fourth choice.
Discussion:
Using the derivative quotient rule
y' = ( (1 + sinx) (-sinx) - cosx ( cosx) ) \ ( 1 + sinx)^2
as (cosx)' = -sinx and (sinx)' = cos
Expanding we get
y' = ( -sinx - (sinx)^2 - (cosx)^2 ) \ (1 + sinx)^2
But (sinx)^2 + (cos)^2 = 1 so this equals
y' = ( -sinx -1 )\ ( 1 + sinx)^2 =>
y' = - ( 1 + sinx) / (1 + sinx)^2
Notice the numerator is the square of the denominator so
y' = -1/(1+sinx)
which is the fourth choice
Thank you,
MrB