223k views
0 votes
In RST, m R =(2x+10)°, m 5=(2x+25)°, and m T=(x-5)°.

What is the value of x?

26
28
30
32

In RST, m R =(2x+10)°, m 5=(2x+25)°, and m T=(x-5)°. What is the value of x? 26 28 30 32-example-1
User Uncovery
by
5.6k points

1 Answer

5 votes

We know that : Sum of Angles in a Triangle is equal to : 180°

⇒ In ΔRST, The Sum of Angles ∠R , ∠S , ∠T should be equal to 180°

⇒ m∠R + m∠S + m∠T = 180°

⇒ (2x + 10)° + (2x + 25)° + (x - 5)° = 180°

⇒ (2x + 2x + x) + (10° + 25° - 5°) = 180°

⇒ 5x + 30° = 180°

⇒ 5x = 180° - 30°

⇒ 5x = 150°

⇒ x = 30°

User Chaunv
by
6.1k points