220k views
3 votes
How is the graph of y=-1/3x related to its parent function y=1/x

A. It is horizontally stretched by a factor of 3 and reflected over the x-axis.
B. It is horizontally stretched by a factor of 3 and reflected over the y-axis.
C. It is horizontally compressed by a factor of 3 and reflected over the x-axis.
D. It is horizontally compressed by a factor of 3 and reflected over the y-axis.

1 Answer

5 votes

Answer: OPTION C.

Explanation:

Some tranformations for a function f(x):

If
bf(x), and
0<b<1, then the function is vertically compressed by a factor of "b".

If
bf(x), and
b>1, then the function is vertically stretched by a factor of "b".

If
f(bx), and
b>1, then the function is horizontally compressed by a factor of "b".

If
f(bx), and
0<b<1, then the function is horizontally stretched by a factor of "b"

If
-f(x), then the function is reflected over the x-axis.

If
f(-x), then the function is reflected over the y-axis.

Given the function
y=-(1)/(3x) and the parent function
y=-(1)/(x), you can observe that:

The function
y=-(1)/(3x) is the function
y=(1)/(x) but horizontally compressed by a factor of 3 and reflected over the x-axis.

User Nardo
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories