Answer:
sin theta = sqrt(57) /11
Explanation:
cos theta = -8/11
cos = opposite/ hypotenuse =x/ (sqrt(x^2+y^2))
sin = adjacent /hypotenuse= y /sqrt (x^2+y^2)
-8/11 = x/ (sqrt(x^2+y^2))
x = -8
sqrt((x^2+y^2)) =11
11^2 = x^2 + y^2
121 = 64+ y^2
57 = y^2
sqrt(57) = y
sin theta = sqrt(57) /11
If it lies in quadrant II
x is negative and y is positive