12.7k views
3 votes
Evaluate the difference quotient for the given function. Simplify your answer. f(x) = 1 x , f(x) − f(a) x − a

User Ryan Gates
by
3.4k points

1 Answer

14 votes

Answer:


(f(x) - f(a))/(x - a)=(-1)/(xa)

Explanation:

Given


f(x) = (1)/(x)

Required

Evaluate
(f(x) - f(a))/(x - a)

We have:


f(x) = (1)/(x)

Next, we calculate f(a)

Substitute a for x in
f(x) = (1)/(x)


f(a) = (1)/(a)

Substitute values for f(x) and f(a) in
(f(x) - f(a))/(x - a)


((1)/(x) - (1)/(a))/(x - a)

Take LCM of the numerator


((a - x)/(xa) )/(x - a)

Split:


(a - x)/(xa) /{x - a}

Convert / to *


(a - x)/(xa) *(1)/(x - a)

Express a - x as -(x-a)


(-(x - a))/(xa) *(1)/(x - a)

Divide numerator and denominator by x - a


(-1)/(xa) *(1)/(1)


(-1)/(xa)

Hence:


(f(x) - f(a))/(x - a)=(-1)/(xa)

User Mtzd
by
3.6k points