229k views
0 votes
If two cylinders are similar in the ratio between the altitude lengths 2:3 what is the ratio of their volumes

1 Answer

1 vote

so that means one of the relevant sides of the cylinders, namely the height, are on a 2:3 ratio, or 2/3 for that matter.



\bf ~\hspace{5em} \textit{ratio relations of two similar shapes} \\[2em] \begin{array}{ccccllll} &\stackrel{ratio~of~the}{Sides}&\stackrel{ratio~of~the}{Areas}&\stackrel{ratio~of~the}{Volumes}\\ \cline{2-4}&\\ \cfrac{\textit{similar shape}}{\textit{similar shape}}&\cfrac{s}{s}&\cfrac{s^2}{s^2}&\cfrac{s^3}{s^3} \end{array}\\\\[-0.35em] ~\dotfill


\bf \cfrac{\textit{similar shape}}{\textit{similar shape}}\qquad \cfrac{s}{s}=\cfrac{√(s^2)}{√(s^2)}=\cfrac{\sqrt[3]{s^3}}{\sqrt[3]{s^3}} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \stackrel{\stackrel{\textit{ratio of the}}{sides}}{\cfrac{2}{3}}~\hspace{7em}\stackrel{\stackrel{\textit{ratio of the}}{volumes}}{\cfrac{2^3}{3^3}}\implies \cfrac{8}{27}\implies 8:27

User Pshemek
by
5.3k points