114k views
3 votes
The shortest side of a polygon of area 196 in² is 4" long find the area of similar polygon who shortest side is 8" long

1 Answer

6 votes


\bf ~\hspace{5em} \textit{ratio relations of two similar shapes} \\[2em] \begin{array}{ccccllll} &\stackrel{ratio~of~the}{Sides}&\stackrel{ratio~of~the}{Areas}&\stackrel{ratio~of~the}{Volumes}\\ \cline{2-4}&\\ \cfrac{\textit{similar shape}}{\textit{similar shape}}&\cfrac{s}{s}&\cfrac{s^2}{s^2}&\cfrac{s^3}{s^3} \end{array}\\\\[-0.35em] ~\dotfill


\bf \cfrac{\textit{similar shape}}{\textit{similar shape}}\qquad \cfrac{s}{s}=\cfrac{√(s^2)}{√(s^2)}=\cfrac{\sqrt[3]{s^3}}{\sqrt[3]{s^3}} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \stackrel{sides}{\cfrac{4^2}{8^2}}=\stackrel{Areas}{\cfrac{196}{a}}\implies \cfrac{16}{64}=\cfrac{196}{a}\implies \cfrac{1}{4}=\cfrac{196}{a}\implies a=784

User Brian Bulkowski
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories