Answer:
Critical value f(1)=2.
Minimum at (1,2), function is decreasing for
and increasing for
![x>1.](https://img.qammunity.org/2019/formulas/mathematics/college/33hxed5zli5lgwg3s7ofmof2rlxw13s0ui.png)
is point of inflection.
When 0<x<3, function is concave upwards and when x>3, , function is concave downwards.
Explanation:
1. Find the domain of the function f(x):
![\left\{\begin{array}{l}x\ge 0\\x\\eq 0\end{array}\right.\Rightarrow x>0.](https://img.qammunity.org/2019/formulas/mathematics/college/txvuhn447wb98yshr5qticqwpgaahdgfdw.png)
2. Find the derivative f'(x):
![f'(x)=((x+1)'\cdot √(x)-(x+1)\cdot (√(x))')/((√(x))^2)=(√(x)-(x+1)/(2√(x)))/(x)=(2x-x-1)/(2x√(x))=\frac{x-1}{2x^{(3)/(2)}}.](https://img.qammunity.org/2019/formulas/mathematics/college/f3u5ieya3i1h2jt08d96ohq8ozgzw3vba4.png)
This derivative is equal to 0 at x=1 and is not defined at x=0. Since x=0 is not a point from the domain, the crititcal point is only x=1. The critical value is
![f(1)=(1+1)/(√(1))=2.](https://img.qammunity.org/2019/formulas/mathematics/college/xagzloe4q8ba5ciuz7r5yqi81b197p1ta5.png)
2. For
the derivative f'(x)<0, then the function is decreasing. For
the derivative f'(x)>0, then the function is increasing. This means that point x=1 is point of minimum.
3. Find f''(x):
![f''(x)=\frac{(x-1)'\cdot 2x^{(3)/(2)}-(x-1)\cdot (2x^{(3)/(2)})'}{(2x^{(3)/(2)})^2}=](https://img.qammunity.org/2019/formulas/mathematics/college/qlnqbj0fprhsz3gkb39qdc9cfggdmvof9t.png)
![=\frac{2x^{(3)/(2)}-2(x-1)\cdot (3)/(2)x^{(1)/(2)}}{4x^3}=\frac{2x^{(3)/(2)}-2\cdot(3)/(2)x^{(3)/(2)}+ 2\cdot(3)/(2)x^{(1)/(2)}}{4x^3}=](https://img.qammunity.org/2019/formulas/mathematics/college/lsc4cf3qarxdm0dwgdwb40677etxgpo4h5.png)
![=\frac{-x+3}{4x^{(5)/(2)}}.](https://img.qammunity.org/2019/formulas/mathematics/college/d3mzjxwutn6aygorldy3f43omvkjmrbzep.png)
When f''(x)=0, x=3 and
When 0<x<3, f''(x)>0 - function is concave upwards and when x>3, f''(x)>0 - function is concave downwards.
Point
is point of inflection.