Answer:
The 99% confidence interval for the mean repair cost for the VCRs
(65.801, 85.199)
Explanation:
Explanation:-
Mean of the sample(x⁻) = $75.50
Given the standard deviation of the sample (S) = $18.07
Given the size of the sample 'n' = 22
Degrees of freedom = n-1 =22-1 =21
critical value t₍₀.₀₁, ₂₁₎ = 2.5176
The 99% confidence interval for the mean repair cost for the VCRs
![(x^(-) - t_(0.01) (S.D)/(√(n) ) , x^(-) +t_(0.01) (S.D)/(√(n) ))](https://img.qammunity.org/2022/formulas/mathematics/college/koabhikws7xlz9bcq6u77syn21uc0iazse.png)
![(75.50 - 2.5176 (18.07)/(√(22) ) , 75.50 +2.5176 (18.07)/(√(22) ))](https://img.qammunity.org/2022/formulas/mathematics/college/5mh5773is2z7xda9ds6owcdm6g3nf9pzbt.png)
( 75.50 - 9.699 , 75.50 + 9.699 )
(65.801, 85.199)
Final answer:-
The 99% confidence interval for the mean repair cost for the VCRs
(65.801, 85.199)