Answer:
f(-2) = 0
Explanation:
If x+2 is a factor of f(x), then -2 will be a zero of f(x).
Sergei must show that f(-2) = 0.
====
Proof:
f(x) = x^6 – 40x^4 – 40x^3 – 141x^2 – 200x + 420.
f(-2) = (-2)⁶ - 40(-2)⁴ - 40(-2)³ - 141(-2)² - 200(-2) + 420
f(-2) = 64 – 40(16) - 40(-8) – 141(4) – 200(-2) + 420
f(-2) = 64 – 640 + 320 – 564 +400 + 420
f(-2) = 0
The graph of f(x) also shows that (x+ 2) is a factor, because there is an
x-intercept at (-2, 0).