1.7k views
5 votes
Convert 3 - 3i to polar form.

a. ‘3sqrt(2)”cis” (pi)/4’

b. ‘3sqrt(2)”cis” (3pi)/4’

c. ‘3sqrt(2)”cis” (5pi)/4’

d. ‘3sqrt(2)”cis” (7pi)/4’

1 Answer

3 votes

Answer:

Option d is correct that is
z=√(18) cos((7\pi)/(4))+i sin((7\pi)/(4))

Explanation:

We have been given a complex number 3-3i we have to convert it in the polar form:

polar form of a complex number:


z=r(cos{\theta}+i sin{\theta})

Where,
r=√(x^2+y^2)

the general form of complex number is:

x+iy

Here, x=3 and y=-3

Hence,
r=√(3^2+(-3)^2)=√(18)

And
\theta=tan^(-1)(y)/(x)


\theta=tan^(-1)(-3)/(3)


\Rightarrow \theta=tan^(-1)(-1)


\Rightarrow \theta=2{\pi}-(\pi)/(4)


\Rightarrow \theta=(7\pi)/(4)

Hence, substituting all the values in polar form formula we get:


z=√(18) cos((7\pi)/(4))+i sin((7\pi)/(4))

Therefore, option d is correct.

User Matt Sich
by
7.5k points