97.9k views
3 votes
Double integral of cos (y^2) dy dx, Where y=1 , y=x, x=0, x=1 are the bounds

User Ppotaczek
by
5.3k points

1 Answer

3 votes


\displaystyle\int_(x=0)^(x=1)\int_(y=1)^(y=x)\cos y^2\,\mathrm dy\,\mathrm dx

Change the order of integration. The region over which you're integrating can be equivalently described by the set of points in the plane,
\{(x,y)\mid0\le x\le y,0\le y\le1\}.

Then the integral becomes


\displaystyle\int_(y=0)^(y=1)\int_(x=0)^(x=y)\cos y^2\,\mathrm dx\,\mathrm dy=\int_(y=0)^(y=1)y\cos y^2\,\mathrm dy

Substitute
z=y^2,
\mathrm dz=2y\,\mathrm dy:


\displaystyle\frac12\int_(z=0)^(z=1)\cos z\,\mathrm dz=\frac12\sin1

User Paulraj
by
6.3k points