214k views
3 votes
Use logarithmic differentiation to find the derivative of the function. y = sqrt(x)e^x^2(x^2 + 5)^12

User Opello
by
8.0k points

1 Answer

4 votes


y=\sqrt x\,e^(x^2)(x^2+5)^(12)=x^(1/2)e^(x^2)(x^2+5)^(1/2)

Take the logarithm of both sides and expand the right hand side:


\ln y=\ln\left(x^(1/2)e^(x^2)(x^2+5)^(1/2)\right)


\ln y=\ln x^(1/2)+\ln e^(x^2)+\ln(x^2+5)^(12)


\ln y=\frac12\ln x+x^2\ln e+12\ln(x^2+5)


\ln y=\frac12\ln x+x^2+12\ln(x^2+5)

Now take the derivative of both sides with respect to
x:


\frac1y(\mathrm dy)/(\mathrm dx)=\frac1{2x}+2x+(24x)/(x^2+5)


(\mathrm dy)/(\mathrm dx)=\left(\frac1{2x}+2x+(24x)/(x^2+5)\right)y


(\mathrm dy)/(\mathrm dx)=\left(\frac1{2x}+2x+(24x)/(x^2+5)\right)\sqrt x\,e^(x^2)(x^2+5)^(12)

I'd stop there, but you could condense the right side a bit to get


(\mathrm dy)/(\mathrm dx)=(4x^4+21x^2+48x+5)/(2x(x^2+5))\sqrt x\,e^(x^2)(x^2+5)^(12)


(\mathrm dy)/(\mathrm dx)=(4x^4+21x^2+48x+5)/(2\sqrt x)e^(x^2)(x^2+5)^(11)

User Chii
by
7.8k points