30.9k views
2 votes
Find the length of the curve, L. y = ln(cos x), 0 ≤ x ≤ π/4

1 Answer

2 votes

Answer:

Length of curve, L=0.3828

Explanation:

We are given a curve
y=\ln \cos(x)

Length of arc L=
\int ds

Where,


ds=√(1+y'^2)dx


\text{Where, }0\leq x \leq (\pi)/(4)


y=\ln \cos(x)

Derivative of y


y'=-\tan x

Substitute y' into ds


ds=√(1+\tan^2x)dx\Rightarrow \int |\sec x|dx


\text{Length of arc L}=\int ds


L=\int_(0)^(\pi/4) |\sec x|dx


L=\log|\tan x+\sec x|_(0)^(\pi/4)


L=\log|1+√(2)|\approx 0.3828

Thus, Length of curve, L=0.3828


User Stewart Stoakes
by
5.7k points