Answer:
A: Nature of root
we have a formula to find the roots of quadratic equation
![(-b\pm√(D))/(2a)](https://img.qammunity.org/2019/formulas/mathematics/high-school/1xn54gftpkr7fqzll6m11bm73hiwjtp65l.png)
where,
![D=b^2-4ac](https://img.qammunity.org/2019/formulas/mathematics/high-school/t1mu3jnbbby7zs7g9ec4lcyjsb4cmvfz09.png)
We have general form of quadratic equation as
![ax^2+bx+c](https://img.qammunity.org/2019/formulas/mathematics/middle-school/3l6y8ndxtwf4im7eyvic0ck83tuh4fwcz1.png)
Here, a=-3,b=6 and c=17 on substituting the values in
and
![(b\pm√(D))/(2a)](https://img.qammunity.org/2019/formulas/mathematics/high-school/dy1x7z4cnrgwsz86m705lu2s1j2ij81lxu.png)
![D=6^2-4(-3)(17)=240](https://img.qammunity.org/2019/formulas/mathematics/high-school/m5gnwmyz7n642ysuclzy3sc3l8562eiqf0.png)
Now, substitute D we get
![(-6\pm√(240))/(2(-3))=(3+2√(15))/(3),\frac{3-2sqrt{15}}{3}](https://img.qammunity.org/2019/formulas/mathematics/high-school/czkmgvsu8ovpipji5w4cisxtozg1tx54o1.png)
B: Open upward or downward
This given function is a downward parabola you can refer the figure in the attachment
C: End behaviour
Here, we have negative leading coefficient and even degree
Hence,
![f(x)\rightarrow-\infty](https://img.qammunity.org/2019/formulas/mathematics/high-school/xqfnoqjdxk2cn98qyczqwzghf3c6ad8784.png)
![f(x)\rightarrow-\infty](https://img.qammunity.org/2019/formulas/mathematics/high-school/xqfnoqjdxk2cn98qyczqwzghf3c6ad8784.png)