61.6k views
5 votes
What is the volume of a pyramid with an equilateral triangle for a base and a height equal to the base side length? Express your answer in terms of s, the length of a side of the base

1 Answer

4 votes


\bf \begin{array}{llll} \textit{area of an equilateral triangle}\\\\ A=\cfrac{s^2√(3)}{4}\qquad \begin{cases} s=length~of\\ \qquad a~side \end{cases} \end{array}\qquad \begin{array}{llll} \textit{volume of a pyramid}\\\\ V=\cfrac{Bh}{3}~~ \begin{cases} B=area~of\\ \qquad its~base\\ h=height\\[-0.5em] \hrulefill\\ B=\cfrac{s^2√(3)}{4}\\[1em] h=s \end{cases} \end{array}



\bf V=\cfrac{~~\left( (s^2√(3))/(4) \right)(s)~~}{3}\implies V=\cfrac{~~(s^3√(3))/(4)~~}{(3)/(1)} \\\\\\ V=\cfrac{s^3√(3)}{4}\cdot \cfrac{1}{3}\implies V=\cfrac{s^3√(3)}{12}

User Hristo Kolev
by
5.7k points