Answer:
1.77 m/s^2
Step-by-step explanation:
There are two forces acting on the car along the direction parallel to the incline:
- The driving force of 10,000 N, which pushes forward
- The component of the weigth of the car parallel to the incline, which pulls backward
The component of the weight of the car parallel to the incline is:

So now we can apply Newton's second law to find the acceleration of the car:
