156k views
20 votes
For some metal alloy, a true stress of 415 MPa produces a plastic true strain of 0.475. How much does a specimen of this material elongate when a true stress of 325 MPa is applied if the original length is 300 mm

User Tim Boland
by
4.7k points

1 Answer

12 votes

Answer:


58.63\ \text{mm}

Step-by-step explanation:


\sigma_t = True stress = 415 MPa


\varepsilon_t = True strain = 0.475


l_i = Original length of the alloy = 300 mm

Let us assume n = Strain hardening component = 0.25

K = Constant

True stress is given by


\sigma_t=K(\varepsilon_t)^n\\\Rightarrow K=(\sigma_t)/((\varepsilon_t)^n)\\\Rightarrow K=(415)/(0.475^(0.25))\\\Rightarrow K=499.89\approx 500\ \text{MPa}

Now
\sigma_t=325\ \text{MPa}


325=500(\varepsilon_t)^(0.25)\\\Rightarrow ((325)/(500))^{(1)/(0.25)}=(\varepsilon_t)\\\Rightarrow \varepsilon_t=0.1785

True strain is given by


\varepsilon_t=\ln((l_f)/(l_i))\\\Rightarrow e^(\varepsilon_t)=(l_f)/(l_i)\\\Rightarrow l_f=l_ie^(\varepsilon_t)\\\Rightarrow l_f=300e^(0.1785)\\\Rightarrow l_f=358.63\ \text{mm}

Elongation of material is
l_f-l_i=358.63-300=58.63\ \text{mm}.

User SeGa
by
4.3k points