Answer:
The probability that both are in the same gamete is 0.25
Explanation:
Given
![P(S) = 50\%](https://img.qammunity.org/2022/formulas/mathematics/college/ye7pxpgaq39axehuufsy8fv9tcpo7r2ota.png)
![P(T) = 50\%](https://img.qammunity.org/2022/formulas/mathematics/college/hs5nvfz20lqqni0aofxlti195xjlow1iol.png)
Required
Determine the probability that both are in same gamete
The required probability means: P(S and T)
This is then calculated as:
![P(S\ and\ T) = P(S) * P(T)](https://img.qammunity.org/2022/formulas/mathematics/college/8yff1gft6853zwl301l3sszfy6ohhoaiiy.png)
Substitute values for P(S) and P(T)
![P(S\ and\ T) =50\% * 50\%](https://img.qammunity.org/2022/formulas/mathematics/college/bx91hmtxolobd61wmsxx7jd5xi4v3aw8nj.png)
Convert to decimal
![P(S\ and\ T) =0.50* 0.50](https://img.qammunity.org/2022/formulas/mathematics/college/eczgjoppw47aqmcnnhbdwypojm3y1hl2m2.png)
![P(S\ and\ T) =0.25](https://img.qammunity.org/2022/formulas/mathematics/college/6o8z2m20ggku6ojbuwroy7hyju2qeagl5d.png)