182k views
4 votes
Given: ∆PQR, m∠R = 90° m∠PQR = 75° M ∈ PR , MP = 18 m∠MQR = 60° Find: RQ

User Piyal
by
8.1k points

1 Answer

4 votes

Answer: RQ= 8.99 ( approx)

Explanation:

Let MR= x

Since, In triangle, PRQ, tan 75°=
(18+x)/(RQ)

⇒ RQ=
(18+x)/(tan 75^(\circ))

Now, In triangle MRQ,

tan 60°=
(18+x)/(RQ)

⇒ RQ=
(x)/(tan 60^(\circ))

On equating both values of RQ,


(18+x)/(tan 75^(\circ))=(x)/(tan 60^(\circ))


(18+x)/(x)=(tan 75^(\circ))/(tan 60^(\circ))


(18+x)/(x)=(tan 75^(\circ))/(tan 60^(\circ))


(18+x)/(x)=2.15470053838


18=2.15470053838x-x


x=15.5884572681≈15.60

Thus RQ=8.99999999999≈8.99


Given: ∆PQR, m∠R = 90° m∠PQR = 75° M ∈ PR , MP = 18 m∠MQR = 60° Find: RQ-example-1
User Will Abson
by
8.1k points