Answer:
1.099 * 10^-8 ; 4.23 * 10^-5 ; 0.0036
Explanation:
Given :
p = 0.6
Sample size, n = 20
P(x = 0)
Using binomial distribution formula :
P(x =x) = nCx * p^x * (1 - p)^(n - x)
1 - p = 1 - 0.6 = 0.4
P(x = 0) = 20C0 * 0.6^0 * 0.4^20
P(x = 0) = 1 * 1 * 1.099511627776E−8
P(x = 0) = 1.099 * 10^-8
2) Exactly 3;
P(x = 3) = 20C3 * 0.6^3 * 0.4^17
P(x = 3) = 1140 * 0.216 * 0.00000017179869184
P(x = 3) = 0.0000423037098786816
P(x = 3) = 4.23 * 10^-5
3.) More than 17
P(x > 17) = P(x = 18) + P(x = 19) + P(x = 20)
Using calculator :
P(x > 17) = 0.0036