Answer:
![V=432√(2)\ cm^(3)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/gpo43orpv5yiiqhotkkyt89d2zaoyyxf8j.png)
Explanation:
we know that
The volume of a cube is equal to
![V=s^(3)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/ed2ob5excd6v06p47sqh2z1ewlcvlklhw5.png)
where s is the length side of a cube
The diagonal of the cube in each face is equal to the diameter of the sphere
so
Applying the Pythagoras theorem
Find the length side s of the cube
![diameter=2*6=12\ cm](https://img.qammunity.org/2019/formulas/mathematics/middle-school/osp8x2sfg8en79ibg3ipxs96k4fg8cwobt.png)
![12^(2) =s^(2)+s^(2)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/ofyardd3wrfksmqp7ohe0sbvy79s4688x4.png)
![12^(2) =2s^(2)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/9wlnirogi348muv8ltid7k45vmd8n0y6ug.png)
![s=6√(2)\ cm](https://img.qammunity.org/2019/formulas/mathematics/middle-school/fe6s74b7rvbhveyqlm82ohj4cua57cr8td.png)
Find the volume of the cube
![V=(6√(2))^(3)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/jz70fi9ggj65hfku0ovuemp081r982uyro.png)
![V=432√(2)\ cm^(3)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/gpo43orpv5yiiqhotkkyt89d2zaoyyxf8j.png)